Динамическая вязкость мпа. Спецификация моторных масел по SAE (по показателю вязкости). Абсолютная и кинематическая вязкость

Классы моторного масла

  • зимнее «W»
  • летнее
  • всесезонное

Проворачиваемость

Прокачиваемость

Кинематическая вязкость

Динамическая вязкость HTHS


Вас заинтересуют


Ваш вопрос успешно отправлен. Спасибо!

Закрыть

Спецификация моторных масел по SAE (по показателю вязкости)

SAE (Society of Automotive Engineers – Общество Автомобильных инженеров). Спецификация SAE J300 является международным стандартом классификации моторных масел.

Вязкость масла – важнейшая характеристика моторного масла, определяющая способность масла обеспечивать стабильную работу двигателя, как в морозы (холодный пуск), так и в жаркую погоду (при максимальной нагрузке).

Температурные показатели моторного масла в своей основе содержат два главных значения: кинематическая вязкость (легкость текучести масла при заданной температуре под воздействием силы тяжести) и динамическая вязкость (показывает зависимость изменения вязкости масла от скорости перемещения смазываемых деталей относительно друг друга). Чем выше скорость, тем ниже вязкость, чем ниже скорость, тем выше вязкость.

Классы моторного масла

  • зимнее «W» – Winter-Зима (SAE 0W, 5W, 10W, 15W, 20W, 25W). Данные моторные масла характеризуются малой вязкостью, обеспечивают безопасный холодный пуск при температурах ниже ноля, но, не обеспечивают достаточно хорошее смазывание деталей летом.
  • летнее (SAE 20, 30, 40, 50, 60). Масла данного класса отличаются высокой вязкостью.
  • всесезонное (SAE 0W-20, 0W-30, 0W-40, 0W-50, 0W-60, 5W-20, 5W-30, 5W-40, 5W-50, 5W-60, 10W-20, 10W-30, 10W-40, 10W-50, 10W-60, 15W-30, 15W-40, 15W-50, 15W-60, 20W-30, 20W-40, 20W-50, 20W-60). Сочетает в себе одновременно характеристики летнего и зимнего моторного масла.

Свойства вязкости при заданных низких температурах

Проворачиваемость определяют при помощи имитатора холодного пуска двигателя (холодная прокрутка от стартера) CCS (Cold Cranking Simulator). Показатель динамической вязкости масла и температуры, при которых масло обладает достаточной текучестью, способной обеспечить безопасный пуск двигателя.

Прокачиваемость определяют, ссылаясь на показания мини-ротационного вискозиметра MRV(Mini-Rotary Viscometer) – на 5Со ниже. Способность прокачиваемости масла насосом в двигателе по системе смазки, исключающая возможность сухого трения деталей.

Свойства вязкости при заданных высоких температурах

Кинематическая вязкость при температуре 100 градусов Цельсия. Показывает минимальные и максимальные значения вязкости моторного масла при условии прогретого двигателя.

Динамическая вязкость HTHS (High Temperature High Shear) при 150 градусах Цельсия, и скорости сдвига 106 с-1. Определяет свойства моторного масла по энергосбережению. Показатель стабильности характеристик вязкости при экстремальных температурах.

Вязкость - это одна из основных характеристик моторного масла, которая определяется по стандарту SAE J300 . Областью применения данного стандарта является определение предельных значений для классификации моторных смазочных масел только в реологических терминах. Другие характеристики масел не рассматриваются или не включены. Напомним, что реология - это раздел физики, изучающий деформации и текучесть вещества. Это говорит о том, что любые попытки только на основании вязкости моторного масла определить его состав, эксплуатационные характеристики или применимость для конкретных двигателей является шарлатанством и недопустимы .


Стандарт SAE J300 регламентирует два блока свойств моторных масел - низкотемпературные и высокотемпературные вязкостные характеристики моторных масел.

Для определения низкотемпературных вязкостных характеристик моторного масла используются два теста:

  • ASTM D5293 - Cold Crank Simulator (CCS ) или имитация холодного пуска. Данный метод определяет максимальную динамическую вязкость моторного масла, при которой обеспечивается гарантированный запуск двигателя штатными системами запуска при низких температурах. Вязкость определяется при температурах от -10 0 С до -35 0 С.
  • ASTM D4684 - Mini Rotary Viscometer (MRV ) или тест на прокачиваемость. Этот метод назван по имени прибора, на котором проводится тест - вискозиметр. В этом методе определяется максимальная динамическая вязкость моторного масла, гарантирующая поступление масла во все пары трения в момент запуска двигателя. То есть, данный тест призван определить насколько будет безопасным тот самый холодных запуск двигателя, возможность которого определяет предыдущий тест. Так как перед запуском все моторное масло находится внизу в картере двигателя, то крайне важно, чтобы при запуске двигателя масло было как можно быстрее доставлено ко всем парам трения, в том числе и тем, которые находятся на самом верху двигателя. Вязкость определяется при температурах -15 0 С до -40 0 С.

Обратите внимание на то, что температура, при которой проводится тест на прокачивание моторного масла одного класса вязкости всегда на 5 градусов ниже, чем температура, при которой проводится имитация холодного пуска. Кроме того, необходимо отметить, что когда мы видим значения температур, при которых проводятся эти тесты, то должны понимать, что имеются в виду НЕ температуры окружающего воздуха , а непосредственно температуры моторного масла . А для того, чтобы температура моторного масла внутри двигателя достигла -35 0 С необходимо, чтобы двигатель находился при температуре окружающего воздуха в -35 0 С более двух суток.

Также следует обратить внимание на тот факт, что в перечне определяемых параметров при классификации по стандарту SAE J300 нет таких параметров, как температура застывания и температура потери текучести . Данные параметры довольно часто являются предметом различных дискуссий при попытке подбора моторного масла, но давайте попробуем разобраться, какие свойства моторного масла могут характеризовать эти два параметра.

Температура застывания моторного масла . Итак, давайте представим себе ситуацию, когда рядом стоят стакан и ведро с одним и тем же моторным маслом. Температура окружающего воздуха начинает постепенно снижаться. Моторное масло в стакане замерзнет значительно раньше, чем моторное масло в ведре, на поверхности которого будет ледяная корка, а внутри масло будет еще жидким. В обоих случаях масло будет замерзать при одной и той же температуре моторного масла , но для того, чтобы его температура снизилась до этой отметки время, проведенное моторным маслом при данной температуре окружающего воздуха , будет разным. Кроме того, сама по себе температура застывания моторного масла в двигателе не может принести потребителю какой-либо практической пользы, так как ему интересно не то, когда он гарантированно НЕ СМОЖЕТ завести двигатель, а то, когда он способен это сделать. Именно поэтому в стандарте SAE J300 не определяется температура застывания моторного масла. Вместо этого проводится тест имитирующий холодный запуск двигателя.

Температура потери текучести . Про данный параметр можно сказать ровно то же, что и про температуру застывания моторного масла. При одной и той же температуре окружающего воздуха моторное масло в трубке диаметром 5-6 мм и 20-30 мм потеряет текучесть за разное количество времени. Ну и безусловно можно повторить, что потребителю гораздо интереснее пределы, до которых масло гарантированно достигнет верхних пар трения, чем температура, при которой масло точно не сможет быть туда доставлено. Что и определяет использование в стандарте SAE J300 теста на прокачиваемость, в котором не рассматривается такой показатель как температура потери текучести.

Теперь перейдем к высокотемпературным вязкостным характеристикам моторного масла. Для их определения в стандарте SAE J300 также имеется два теста:

  • ASTM D445 - Кинематическая вязкость при 100 0 С. Метод определяет минимальную кинематическую вязкость моторного масла при температурах, близких к рабочим температурам двигателя. Кинематическая вязкость равна отношению динамической вязкости к плотности среды. Измерение кинематической вязкости производится под действием силы тяжести в капиллярном вискозиметре. В процессе измеряется время вытекания из калиброванной емкости через отверстие определенного диаметра под действием силы тяжести.
  • ASTM D5481 - H igh T emperature H igh S hare (HTHS ) или вязкость при высокой температуре (150 0 С) и высокой скорости сдвига (10 6 с -1 ). Метод определяет минимальное значение динамической вязкости, при котором моторное масло гарантированно обеспечивает наличие масляной пленки на поверхностях движущихся деталей двигателя. По сути, в данном испытании происходит имитация реальных условий работы моторного масла в таких местах двигателя, как соединения гильзы цилиндра - поршневые кольца. Указанная скорость сдвига, которая реализуется вискозиметром, используемым в данном тесте, соответствует приблизительно 8000-9000 оборотов двигателя. Данный тест призван подтвердить тот факт, что при высокой температуре и высокой скорости сдвига масляная пленка будет существовать, не будет масляного голодания и повышенного износа движущихся частей двигателя. Параметр HTHS является крайне важным для классификации моторных масел по категории PC-11 , причем для подкатегории API FA-4 он становится критически важным. Поскольку по данному параметру мы можем оценить баланс между защитой двигателя и максимальной топливной эффективностью.

Ориентируясь на результаты описанных выше тестов стандарт SAE J300 описывает несколько классов вязкости, для каждого из которых указаны предельные значения параметров, определяемых в испытаниях. Классы вязкости сведены в приведенную таблицу. В ней присутствуют зимние классы вязкости, которые имеют в своем названии букву W и в таблице выделены синим цветом. Также имеются летние классы вязкости, которые отмечены в таблице красным цветом.

Для каждого из зимних классов вязкости указана вязкость CCS в единицах системы Си - миллипаскалях в секунду (это соответствует сантипуазам - единицам, в которых измеряется динамическая вязкость в системе единиц СГС ) при соответствующей температуре моторного масла. Принадлежность моторного масла к одному из зимних классов вязкости свидетельствует, что двигатель использующий данное моторное масло сможет завестись при данной температуре моторного масла.

Вязкость для теста MRV указана одна для всех зимних классов вязкости, но температура проведения теста различается для каждого класса.

Кроме того, для того, чтобы соответствовать одному из зимних классов вязкости моторное масло должно обладать определенной минимальной кинематической вязкостью при 100 0 С, значения указаны в единицах системы СИ - миллиметры квадратные на секунду (это соответствует сантистоксам - единицам, в которых измеряется кинематическая вязкость в системе единиц СГС ).

Для летних классов вязкости указано значение динамической вязкости в параметре HTHS , но тут речь идет, в отличии от максимального значения для зимних классов вязкости, о минимальном значении. При значении параметра HTHS ниже порогового возможно возникновение масляного голодания и повышенного износа частей двигателя.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 сантипуаз [спз] = 0,001 паскаль-секунда [Па·с]

Исходная величина

Преобразованная величина

паскаль-секунда килограмм-сила-сек. на кв. метр ньютон-сек. на кв. метр миллиньютон-секунда на кв. метр дина-секунда на кв. сантиметр пуаз эксапуаз петапуаз терапуаз гигапуаз мегапуаз килопуаз гектопуаз декапуаз деципуаз сантипуаз миллипуаз микропуаз нанопуаз пикопуаз фемтопуаз аттопуаз фунт-сила-сек. на кв. дюйм фунт-сила-сек. на кв. фут паундаль-секунда на кв. фут грамм на сантиметр в секунду слаг на фут в секунду фунт на фут в секунду фунт на фут в час рейн

Логарифмические единицы

Подробнее о динамической вязкости

Общие сведения

Вязкость - свойство жидкостей противостоять силе, которая вызывает их текучесть. Вязкость подразделяют на два типа - на динамическую и кинематическую . В отличие от кинематической вязкости, динамическая или абсолютная вязкость - независима от плотности жидкости, так как она определяет внутреннее трение в жидкости. Абсолютная вязкость часто связана с напряжением сдвига, то есть напряжением, которое вызвано силой, действующей параллельно поперечному сечению тела, или, в нашем случае, жидкости. Для примера, представим жидкость настолько вязкую, что на протяжении нескольких минут она может держать форму, например куба, практически без изменений. Это может быть, например, густое фруктовое повидло. Положим этот куб на тарелку, и проведем по его верхней стороне рукой параллельно этой стороне. Сила, с которой рука действует на повидло, вызывает напряжение сдвига. Так как повидло очень вязкое, то оно потянется за рукой и куб изменит свою форму. То есть вязкость - это свойство повидла не растекаться, а, наоборот, следовать движению руки.

В основном вязкость - это свойство жидкостей и газов, хотя иногда твердые тела также описывают с помощью вязкости. Особенно это свойство присуще телам, если они подвергаются малому, но постоянному напряжению, и их форма постепенно искажается. Высокая вязкость вещества характеризуется высоким сопротивлением напряжению сдвига.

Когда говорят о вязкости вещества, то обязательно указывают температуру, при которой тело имеет эту вязкость, так как это свойство изменяется в зависимости от температуры. Например, гораздо легче размешать теплый мед, чем холодный, так как он менее вязок. То же происходит и со многими маслами. К примеру, оливковое масло при комнатной температуре совсем не вязкое, но в холодильнике его вязкость заметно увеличивается.

Ньютоновские и неньютоновские жидкости

Кода говорят о вязкости, различают два типа жидкостей: ньютоновские и неньютоновские. Вязкость первых не зависит от силы, на них действующей. Со вторыми дело обстоит сложнее, так как в зависимости от величины этой силы и от того, как она приложена, они становятся более или менее вязкими. Хороший пример неньютоновской жидкости - сливки. В обычных условиях они почти совсем не вязкие. Их вязкость не изменяется, даже если приложить к ним небольшую силу, например, медленно мешать их ложкой. Если же увеличить эту силу, например если мешать их миксером, то вязкость также начнет постепенно увеличиваться, пока не станет настолько велика, что сливки смогут держать форму (взбитые сливки). Также ведут себя и сырые яичные белки.

Вязкость в повседневной жизни

Знания о вязкости и о том, как ее измерять и поддерживать, помогают и в медицине, и в технике, и в кулинарии, и в производстве косметики. Косметические компании зарабатывают огромную прибыль на том, что смогли найди идеальный баланс вязкости, который нравится покупателям.

Вязкость и косметика

Чтобы косметика держалась на коже, ее делают вязкой, будь это жидкий тональный крем, блеск для губ, подводка для глаз, тушь для ресниц, лосьоны, или лак для ногтей. Вязкость для каждого изделия подбирается индивидуально, в зависимости от того, для какой цели оно предназначено. Блеск для губ, например, должен быть достаточно вязким, чтобы долго оставаться на губах, но не слишком вязким, иначе тем, кто им пользуется, будет неприятно ощущать на губах что-то липкое. В массовом производстве косметики используют специальные вещества, называемые модификаторами вязкости. В домашней косметике для тех же целей используют разные масла и воск.

В гелях для душа вязкость регулируют для того, чтобы они оставались на теле достаточно долго, чтобы смыть грязь, но не дольше, чем нужно, иначе человек почувствует себя снова грязным. Обычно вязкость готового косметического средства изменяют искусственно, добавляя модификаторы вязкости.

Лосьоны, кремы и мази, лекарственные или косметические, различают по их вязкости. Все три вещества - эмульсии воды и жирных веществ, например масел. Эмульсии состоят из смеси двух или более несмешивающихся друг с другом веществ - в нашем случае, жира и воды. Чем больше в них содержится жира, тем они более вязкие. Чтобы стабилизировать эмульсию, часто используют эмульгаторы. Они нередко присутствуют в косметических средствах. Например, часто используются эмульгирующий воск, и цетилстеариловый эфир. Первый - это воск, обработанный средством, похожим на моющее, а второй - смесь насыщенных жирных кислот. Жирная и водная основы в некоторых лосьонах не смешаны, а разделены, как если бы мы налили в стакан пополам растительного масла и воды, не перемешивая их. Перед употреблением бутылочку с таким лосьоном взбалтывают, создавая кратковременную эмульсию. Позже она возвращается в прежнее состояние. Обычно в таких смесях водная основа менее вязкая, чем жирная основа, поэтому при взбалтывании вязкость всего лосьона становится где-то между водной и жирной основой.

Наибольшая вязкость - у мазей. Вязкость кремов - ниже, а лосьоны - наименее вязкие. Благодаря этому лосьоны ложатся на кожу более тонким слоем, чем мази и кремы, и действуют на кожу освежающе. По сравнению с более вязкой косметикой, их приятно использовать даже летом, хотя втирать их нужно сильнее и чаще приходится наносить повторно, так как они долго не задерживаются на коже. То, что они не так сильно держатся на волосах, позволяет успешно использовать их на голове и в других местах, где есть волосы, особенно как лекарственные средства. Мы часто представляем себе спиртовой раствор, когда слышим слово «лосьон», но на самом деле спирт в них уже почти не используется. Кремы и мази дольше остаются на коже, чем лосьоны, и сильнее ее увлажняют. Их особенно хорошо использовать зимой, когда в воздухе меньше влаги. В холодную погоду, когда кожа сохнет и трескается, очень помогают такие средства как, например, масло для тела - это что-то среднее между мазью и кремом. Мази намного дольше впитываются и после них кожа остается жирной, но они намного дольше остаются на теле. Поэтому их часто используют в медицине.

От того, понравилась ли вязкость косметического средства покупателю, часто зависит, выберет ли он это средство в будущем. Именно поэтому производители косметики тратят много усилий на то, чтобы получить оптимальную вязкость, которая должна понравиться большинству покупателей. Один и тот же производитель часто выпускает продукт для одних и тех же целей, например гель для душа, в разных вариантах и с разной вязкостью, чтобы у покупателей был выбор. Во время производства строго следуют рецепту, чтобы вязкость соответствовала стандартам.

Использование вязкости в кулинарии

Чтобы улучшить оформление блюд, сделать еду более аппетитной и чтобы ее было легче есть, в кулинарии используют вязкие продукты питания. Продукты с большой вязкостью, например, соусы, очень удобно использовать, чтобы намазывать на другие продукты, как хлеб. Их также используют для того, чтобы удерживать слои продуктов на месте. В бутерброде для этих целей используют масло, маргарин, или майонез - тогда сыр, мясо, рыба или овощи не соскальзывают с хлеба. В салатах, особенно многослойных, также часто используют майонез и другие вязкие соусы, чтобы эти салаты держали форму. Самые известные примеры таких салатов - селедка под шубой и оливье. Если вместо майонеза или другого вязкого соуса использовать оливковое масло, то овощи и другие продукты не будут держать форму. В салате часто предпочитают более вязкие соусы, но майонез содержит насыщенные жиры, которые наносят вред здоровью. Поэтому те, кто стараются питаться здоровой пищей, часто заменяют майонез смесью маложирного или обезжиренного йогурта и оливкового масла. Йогурт придает соусу вязкости, которую не может дать оливковое масло, а оливковое масло - тонкий аромат и немного жирности. В такой соус можно добавить приправ, например трав, бальзамического уксуса, или сока лимона, и тогда соус будет не только полезнее для здоровья, но и намного вкуснее майонеза. Важно только не переусердствовать с оливковым маслом, так как хоть оно и не содержит холестерина, количество жиров и калорий в нем достаточно высоко.

Вязкие продукты с их способностью удерживать форму используют также для украшения блюд. Например, йогурт или майонез на фотографии не только остаются в той форме, которую им придали, но и поддерживают украшения, которые на них положили.

По этой же причине так популярны сливочные соусы для макарон. При нагревании сливок и масла, они густеют и становятся более вязкими, что помогает при украшении блюд и придает соусу приятную консистенцию. В таком виде смесь этих двух продуктов используют как основу для сливочных соусов. Томатный соус не такой вязкий, как сливочный. Так как в сливках и масле содержится большой процент жира, в диетическом питании их часто заменяют молоком. При нагревании молоко загустевает намного хуже, чем сливки и масло, поэтому для увеличения его вязкости используют муку или крахмал. При этом может ухудшиться вкус блюда, особенно если добавить слишком много муки или крахмала, поэтому в таких соусах часто используют больше приправ, хотя это зависит от мастерства повара.

Вязкость растительных масел обычно недостаточно высока, поэтому для удобства использования их в кулинарии масла подвергают гидрогенизации. С помощью этого процесса производят маргарин. Гидрогенизированные масла лучше держатся на хлебе и других продуктах, а также их можно взбивать - свойство, которое часто используют в выпечке. Благодаря низкой цене и высокой вязкости, до недавнего времени маргарин пользовался большой популярностью на кухне. Теперь его используют реже, потому что с ним связан ряд проблем, например высокий уровень транс- и насыщенных жиров. Эти жиры повышают уровень холестерина в организме. В последнее время производители стараются уменьшить количество этих жиров, поэтому покупая маргарин, стоит проверить информацию о жирах на этикетке.

Вязкость в медицине

В медицине необходимо уметь определять и контролировать вязкость крови, так как высокая вязкость способствует ряду проблем со здоровьем. По сравнению с кровью нормальной вязкости, густая и вязкая кровь плохо движется по кровеносным сосудам, что ограничивает поступление питательных веществ и кислорода в органы и ткани, и даже в мозг. Если ткани получают недостаточно кислорода, то они отмирают, так что кровь с высокой вязкостью может повредить как ткани, так и внутренние органы. Повреждаются не только части тела, которым нужно больше всего кислорода, но и те, до которых крови дольше всего добираться, то есть, конечности, особенно пальцы рук и ног. При обморожении, например, кровь становится более вязкой, несет недостаточно кислорода в руки и ноги, особенно в ткань пальцев, и в тяжелых случаях происходит отмирание ткани. В такой ситуации пальцы, а иногда и части конечностей приходится ампутировать.

Высокая вязкость крови может быть вызвана не только низкими температурами, но также и наследственными заболеваниями или физиологическими аномалиями, при которых в крови слишком много кровеносных телец, слишком мало плазмы, или повышен холестерин. Лечится эта проблема медленным нагреванием обмороженных участков, разжижением крови дополнительной плазмой, а также другими способами.

Влияние вязкости на процесс извержения вулкана

Во время извержения вулкана вязкость магмы влияет на силу извержения. Чем меньше вязкость, тем более низкое давление требуется, чтобы вытолкнуть ее из кратера, и тем лучше она будет растекаться по склонам горы. Примеры таких вулканов - на Гавайских островах. Так как жидкую магму низкой вязкости легче вытолкнуть из кратера, то и извержения в таких вулканах случаются чаще, но они менее бурные, чем у вулканов с вязкой магмой.

Вулкан выталкивает вязкую магму из кратера при высоком давлении, и извержения похожи на взрывы, а не на плавно изливающуюся реку. Эти взрывы происходят из-за того, что в магме содержатся пузырьки воздуха. Такие взрывы очень опасны, так как их трудно предсказать. Одно из известных извержений такого типа - извержение Везувия в Помпеях в 79 году, которое погребло под лавой и пеплом несколько городов.

Увидеть извержение вулкана удается немногим, к тому же в большинстве случаев это опасно. Тем не менее, можно увидеть похожее явление у себя на кухне. Поставьте два вида супа на кухонную плиту, и доведите их до кипения. Один суп должен быть низкой вязкости, например куриный бульон, а второй - наоборот высокой вязкости, например суп-потаж или суп-пюре. Бульон будет кипеть, пока не выкипит вся жидкость, но скорее всего он лишь немного запачкает плиту, и то, только в том случае, если кастрюля переполнена. Кипение вязкого супа будет намного более бурным из-за пузырьков воздуха, которые в нем находятся. Так ведет себя не только суп, но и любая вязкая жидкость, например манная каша на фотографии.

Вязкость магмы зависит от температуры и от химического состава. Чем больше в составе магмы диоксида кремния, тем она более вязкая, благодаря структуре молекул кремнезема.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Вода H 2 O представляет собой ньютоновскую жидкость и ее течение описывается законом вязкого трения Ньютона, в уравнении которого коэффициент пропорциональности называется коэффициентом вязкости, или просто вязкостью.

Вязкость воды зависит от температуры. Кинематическая вязкость воды равна 1,006·10 -6 м 2 /с при температуре 20°С.

В таблице представлены значения кинематической вязкости воды в зависимости от температуры при атмосферном давлении (760 мм.рт.ст.). Значения вязкости даны в интервале температуры от 0 до 300°С. При температуре воды свыше 100°С, ее кинематическая вязкость указана в таблице на линии насыщения.

Кинематическая вязкость воды изменяет свою величину при нагревании и охлаждении. По данным таблицы видно, что с ростом температуры воды ее кинематическая вязкость уменьшается . Если сравнить вязкость воды при различных температурах, например при 0 и 300°С, то очевидно ее уменьшение примерно в 14 раз. То есть вода при нагревании становится менее вязкой, а высокая вязкость воды достигается если воду максимально охладить.

Значения коэффициента кинематической вязкости при различных температурах необходимы для вычисления величины числа Рейнольдса, которое соответствует определенному режиму течения жидкости или газа.

Если сравнить вязкость воды с вязкостью других ньютоновских жидкостей, например с , или с , то вода будет иметь меньшую вязкость. Менее вязкими, по сравнению с водой, являются органические жидкости – , бензол и сжиженные газы, например такие, как .

Динамическая вязкость воды в зависимости от температуры

Кинематическая и динамическая вязкость связаны между собой через значение плотности. Если кинематическую вязкость умножить на плотность, то получим величину коэффициента динамической вязкости (или просто динамическую вязкость).

Динамическая вязкость воды при температуре 20°С равна 1004·10 -6 Па·с. В таблице даны значения коэффициента динамической вязкости воды в зависимости от температуры при нормальном атмосферном давлении (760 мм.рт.ст.). Вязкость в таблице указана при температуре от 0 до 300°С.

Динамическая вязкость при нагревании воды уменьшается , вода становится менее вязкой и при достижении

Что такое SAE ?

SAE – это сообщество автомобильных инженеров (англ. Society of Automobile Engineers , SAE) - источник технической информации и опыта, используемого в разработке, производстве, обслуживании и управлении транспортных средств для использования на земле или море, в воздухе или космосе.

SAE классификация масел по вязкости, разработанная Американской ассоциацией автомобильных инженеров (SAE), подразделяет масла на классы по текучести, т.е. способности масла течь и одновременно "прилипать" к поверхности металла. Она действует в Европе, США, Японии и других странах.

Для справки.

Вязкость жидкости - это выражение внутреннего трения ее молекул друг с другом. Считается, что вязкость - это сопротивление, которое препятствует передвижению одной частицы масла.


Кинематическая вязкость моторных масел измеряется при двух температурах (40°С и 100°С) в сантистоксах (сокращенно cST или сСт). Она и измеряется, например, в капилляр-визкозиметрах, как время вытекания определенного количества масла из очень узкого сосуда при воздействии силы тяжести в мм 2 /с.


Динамическая вязкость измеряется в миллипаскаль-секундах при температуре 150°С (сокращенно: mPas или мПа·с).


Прокачиваемость - способность масляного насоса прокачать масло при минимальной температуре.


Проворачиваемостъ - способность стартера проворачивать двигатель при минимальной температуре.

Класс SAE сообщает потребителю диапазон температуры окружающей среды, в котором масло обеспечит проворачивание двигателя стартером (первая слева колонка), прокачивание масла масляным насосом по смазочной системе двигателя под давлением при холодном пуске в режиме, не допускающем сухого трения в узлах трения (вторая слева колонка), и надежное смазывание летом при длительной работе в максимальном скоростном и нагрузочном режиме.

Классификация SAE J 300 APR 97

Класс пo SAE

Низкотемпературная вязкость

Высокотемпературная вязкость

Проворачивание*

Прокачиваемосгь**

Вязкость***,
мм 2 /с, при 100° С

Вязкость****,
мПа с, при 150 °С и скорости сдвига 106с -1 , нe менее

Максимальная вязкость, мПа с, при t,°С

3250 при -30°С

60000 при -40°С

3500 при -25°С

60000 при -35°С

3500 при -20°С

60000 при -30°С

3500 при -15°С

60000 при -25°С

4500 при -10°С

60000 при -20°С

3250 при -5°С

60000 при -15°С


* Вязкость измеряется по методу ASTM D 5293 на вискозиметре CCS.
** Вязкость измеряется по методу ASTM D 4684 на вискозиметре MRV; напряжение сдвига не допускается при любом значеи вязкости.
*** Вязкость измеряется по методу ASTM D 445 на капиллярном вискозиметре (кинематическая).
**** Вязкость измеряется по методам ASTM D 4683 или CEC L-36-A-90 на коническом имитаторе подшипника.
*a Это значение для классов SAE 0W-40, 5W-40, 10W-40.
*аа Это значение для классов SAE 40, 15W-40, 20W-40, 25W-40.

Классификация подразделяет моторные масла на шесть зимних классов (0W, 5W, 10W, 15W, 20W и 25W) и пять летних (20, 30, 40, 50 и 60). В этих рядах большим числам соответствует большая вязкость. Всесезонные масла, пригодные для круглогодичного применения, обозначают сдвоенным номером, один из которых указывает зимний, другой - летний класс, например, SAE 5W-30 или 10W-40, 15W-40, 20W-50 и т. п.


Классификация SAE J 300 APR 97 для зимних масех устанавливает максимальные значения динамической вязкости при низких температурах и минимальные значения кинематической вязкости при 100°С. Для летних масех установлены пределы кинематической вязкости при 100° С и минимальные значения динамической вязкости при 150°С и скорости сдвига 106 с -1 .


Всесезонные масла отвечают требованиям к одному из зимних и к одному из летних масел одновременно, т. е. обладают очень пологой зависимостью вязкости от температуры. Это достигается загущеннием маловязких масел специальными макрополимерными присадками, повышающими индекс вязкости, иначе говоря, загущающими масло в области высоких температур больше, чем в области низких температур, и (или) использованием синтетических компонентов в качестве основы масла.


Примерное соответствие российской (ГОСТ 17479.1-85) и SAE классификаций


Класс пo SAE

Россия

Кинематическая вязкость при 100°С(мм 2 /с)

Назначение

Всесезонные

Обращаем внимание на то, что для двигателей различной конструкции температурные диапазоны работоспособности масла данного класса по SAE существенно различаются. Они зависят от мощности стартера, минимальной пусковой частоты вращения коленчатого вала, требуемоего для пуска двигателя, от производительности масляного насоса, от гидравлического сопротивления маслоприемного тракта и многих других конструктивных, технологических и эксплуатационных факторов (техническое состояние автомобиля, качество бензина или дизтоплива квалификация водителя и т. п.).

Сочетание значений вязкости летнего и зимнего сортов масла не означает арифметического сочетания свойств вязкости. Так, например, масло 5W-30 рекомендовано к эксплуатации при температурах окружающей среды от -30 до +20°С. Вместе с этим летнее масло 30 может работать при температурах до 30°С, но только выше нуля.

Каждый двигатель каждой марки автомобиля отличается уникальным сочетанием степени форсированности, теплонапряженности, особенностей конструкции, применяемых материалов и так далее, вплоть до качества обработки поверхностей. Таким образом, владельцу Subaru не следует слепо использовать таблицу допустимых температур Chrysler.

Для автомобилей «Жигули» эта таблица выглядит следующим образом

Класс по SAE

Рабочий диапазон температур,°С

от-30 до +20

от-30 до +35

от-30 до +45

от-30 до +20

от-25 до +35

от-25 до +45

от-20 до +35

от-20 до +45

от-20 до +45

от-15 до +40

от-15 до +45

от-15 до +45

Следует помнить, что классификация SAE J 300 распространяется только на вязкостно-температурные свойства моторных масел и не сообщает никакой информации об их эксплуатационных качествах.

Семья