Векторы в пространстве определение и действия. Векторы в пространстве. Умножение вектора на число

Лекция 3. Векторы. Системы линейных уравнений.

Векторы

Цель изучения темы состоит в обобщении понятия вектора, с которым студенты знакомы по школьной программе и расширение ее систематического кругозора.

Векторы на плоскости и в пространстве.

Вектор – это направленный отрезок . Точка А – начало вектора, точка В – конец вектора (рис. 3.1.1). Можно использовать обозначение .

Длиной (модулем) вектора называется число, равное длине вектора. Обозначается модуль вектора символом или . Если модуль вектора , вектор называется нулевым ; направление нулевого вектора произвольно.

Два вектора называются коллинеарными , если они параллельны одной прямой (или лежат на одной прямой), в этом случае пишут . Нулевой вектор коллинеарен любому вектору.

Два вектора равны , то есть , если выполняется три условия: ; и и одинаково направлены.

Произведением вектора ā на число (скаляр) λ называется вектор , удовлетворяющий следующим условиям: , векторы и сонаправлены, если и направлены в противоположные стороны, если . Если , вектор называется противоположным вектору .

Таким образом, условие является достаточным для коллинеарности вектором и ;

Сложение векторов. Суммой двух векторов и называется вектор , начало которого совпадает с началом вектора , а конец – с концом вектора при условии, что начало вектора совпадает с концом вектора (правило треугольника) (см. рис. 3.1.2).

Так как вектор , то для получения суммы двух векторов можно использовать правило параллелограмма : суммой двух векторов является вектор-диагональ параллелограмма, построенного на векторах и , выходящий их общего начала обоих векторов-слагаемых.

Сумма нескольких векторов находится по правилу многоугольника : чтобы найти сумму нескольких векторов , нужно последовательно совместить начало следующего вектора-слагаемого с концом предыдущего; тогда вектор, проведенный из начала первого вектора в конец последнего называется суммой всех данных векторов (рис. 3.1.3).

Разностью двух векторов называется сумма . Если вектор , то по аналогии с суммой двух векторов этот вектор является диагональю параллелепипеда, построенного на трех векторах как на сторонах (рис. 3.1.4).

Рассмотрим вектор в плоскости. Перенесем в начало координат системы хОу .

Получим вектор . Координатами вектора называются координаты точки М (х ;у ). Введем на осях координат векторы i и j – единичной длины (рис. 3.1.5).

Очевидно, или или . Если вектор рассматривается в трехмерном пространстве, где точка М характеризуется тремя координатами, то есть M (x,y,z ) , то вектор можно представить в виде:


xi yj zk , (3.1.1)

где i, j, k – единичные векторы, лежащие на осях координат. Пусть , . Найдем сумму и разность этих векторов:

Сложение векторов и умножение вектора на скаляр подчиняется следующим свойствам:

Доказательства вытекают на основании (3.1.2).


Определение. Скалярным произведением векторов и называется число равно произведению модулей этих векторов на косинус угла φ между ними, то есть . (3.1.3)

Из (3.1.3) вытекают свойства скалярного произведения:

4) если , то .

Используя свойства скалярного произведения, можно найти скалярное произведение двух векторов в координатной форме. Если , , то ; если - условие перпендикулярности векторов.

Если векторы коллинеарны, то есть , то - условие коллинеарности векторов.

Понятие n -мерного вектора. Векторное пространство. Линейная комбинация и линейная зависимость векторов.

Понятие вектора можно обобщить.

Определение. n -мерным вектором называется упорядоченная совокупность n действительных чисел, записываемых в виде Х=(х 1 , х 2 ,…, х n) , х i – компоненты вектора Х .

Понятие n -мерного вектора широко используется в экономике. Например, некоторый набор товаров можно охарактеризовать вектором , а соответствующие цены – вектором .

Два n -мерных вектора равны тогда и только тогда, когда равны их соответствующие компоненты: , .

По аналогии с геометрическими векторами вводятся: сумма векторов с компонентами , ; разность векторов с компонентами , , с теми же свойствами.

Скалярное произведение n -мерных векторов:

Если X - набор товаров, а Y - соответствует ценам за единицу каждого товара, то стоимость всем товаров:

Определение. Множество векторов с действительными компонентами, в котором определены операции сложения (вычитания) и умножения вектора на скаляр, удовлетворяющего приведенным выше свойствам называется векторным пространством.


Определение. Вектор называется линейной комбинацией векторов векторного пространства, если

, (3.1.4)

где - любые действительные числа.

Определение. Векторы называются линейно зависимыми, если существуют такие числа , не равные одновременно нулю, что линейная комбинация .

В противном случае векторы () называются линейно независимыми.

Если векторы линейно зависимы, то хотя бы один из них линейно выражается через остальные. Покажем это. Пусть векторы () линейно зависимы, то естьn), следовательно

Решив систему любым методом (например, методом Крамера), получим ее решение: , , . Разложение вектора по базису имеет вид .


В этой статье мы дадим определение вектора с точки зрения геометрии, а также основные сопутствующие понятия. На плоскости и в пространстве вектор является полноценным геометрическим объектом, то есть, имеет вполне реальные очертания, которые Вы увидите на приведенных графических иллюстрациях.

Определение.

Вектор – это направленный отрезок прямой.

То есть, в качестве вектора мы принимаем отрезок на плоскости или в пространстве, считая одну из его граничных точек началом, другую – концом.


Для обозначения векторов будем использовать строчные латинские буквы со стрелочкой над ними, например . Если заданы граничные точки начала и конца отрезка, к примеру А и В , то вектор будем обозначать как .

Определение.

Нулевой вектор – это любая точка плоскости или пространства.

Определение.

Длина вектора - это неотрицательное число, равное длине отрезка АВ .

Длину вектора будем обозначать как .

Так как обозначение длины вектора в точности совпадает со знаком модуля, то можно услышать, что длину вектора называют модулем вектора. Все же рекомендуем использовать термин "длина вектора". Длина нулевого вектора равна нулю.

Определение.

Два вектора называют коллинеарными , если они лежат либо на одной прямой, либо на параллельных прямых.

Определение.

Два вектора называют неколлинеарными , если они не лежат на одной прямой или параллельных прямых.

Нулевой вектор коллинеарен любому другому вектору.


Определение.

сонаправленными , если их направления совпадают и обозначают .

Определение.

Два коллинеарных вектора и называют противоположно направленными , если их направления противоположны и обозначают .


Определение.

Два вектора называются равными , если они сонаправленные и их длины равны.

Определение.

Два вектора называются противоположными , если они противоположно направлены и их длины равны.

Понятие равных векторов дает нам возможность рассматривать векторы без привязки к конкретным точкам. Другими словами, мы имеем возможность заменить вектор равным ему вектором, отложенным от любой точки.

Пусть и два произвольных вектора на плоскости или в пространстве. Отложим от некоторой точки O плоскости или пространства векторы и . Лучи OA и OB образуют угол .

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Понятие вектора

Прежде чем Вы узнаете всё о векторах и операциях над ними, настройтесь на решение несложной задачи. Есть вектор Вашей предприимчивости и вектор Ваших инновационных способностей. Вектор предприимчивости ведёт Вас к Цели 1, а вектор инновационных способностей - к Цели 2. Правила игры таковы, что Вы не можете двигаться сразу по направлениям двух этих векторов и достигнуть сразу двух целей. Векторы взаимодействуют, или, если говорить математическим языком, над векторами производится некоторая операция. Результатом этой операции становится вектор "Результат", который приводит Вас к Цели 3.

А теперь скажите: результатом какой операции над векторами "Предприимчивость" и "Инновационные способности" является вектор "Результат"? Если не можете сказать сразу, не унывайте. По мере изучения этого урока Вы сможете ответить на этот вопрос.

Как мы уже увидели выше, вектор обязательно идёт от некоторой точки A по прямой к некоторой точке B . Следовательно, каждый вектор имеет не только числовое значение - длину, но также физическое и геометрическое - направленность. Из этого выводится первое, самое простое определение вектора. Итак, вектор - это направленный отрезок, идущий от точки A к точке B . Обозначается он так: .


А чтобы приступить к различным операциям с векторами , нам нужно познакомиться с ещё одним определением вектора.

Вектор - это вид представления точки, до которой требуется добраться из некоторой начальной точки. Например, трёхмерный вектор, как правило, записывается в виде (х, y, z ) . Говоря совсем просто, эти числа означают, как далеко требуется пройти в трёх различных направлениях, чтобы добраться до точки.

Пусть дан вектор. При этом x = 3 (правая рука указывает направо), y = 1 (левая рука указывает вперёд), z = 5 (под точкой стоит лестница, ведущая вверх). По этим данным вы найдёте точку, проходя 3 метра в направлении, указываемом правой рукой, затем 1 метр в направлении, указываемом левой рукой, а далее Вас ждёт лестница и, поднимаясь на 5 метров, Вы, наконец, окажетесь в конечной точке.

Все остальные термины - это уточнения представленного выше объяснения, необходимые для различных операций над векторами, то есть, решения практических задач. Пройдёмся по этим более строгим определениям, останавливаясь на типичных задачах на векторы.

Физическими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на неё сила.

Геометрический вектор представлен в двумерном и трёхмерном пространстве в виде направленного отрезка . Это отрезок, у которого различают начало и конец.

Если A - начало вектора, а B - его конец, то вектор обозначается символом или одной строчной буквой . На рисунке конец вектора указывается стрелкой (рис. 1)

Длиной (или модулем ) геометрического вектора называется длина порождающего его отрезка

Два вектора называются равными , если они могут быть совмещены (при совпадении направлений) путём параллельного переноса, т.е. если они параллельны, направлены в одну и ту же сторону и имеют равные длины.

В физике часто рассматриваются закреплённые векторы , заданные точкой приложения, длиной и направлением. Если точка приложения вектора не имеет значения, то его можно переносить, сохраняя длину и направление в любую точку пространства. В этом случае вектор называется свободным . Мы договоримся рассматривать только свободные векторы .

Линейные операции над геометрическими векторами

Умножение вектора на число

Произведением вектора на число называется вектор, получающийся из вектора растяжением (при ) или сжатием (при ) в раз, причём направление вектора сохраняется, если , и меняется на противоположное, если . (Рис. 2)

Из определения следует, что векторы и = всегда расположены на одной или на параллельных прямых. Такие векторы называются коллинеарными . (Можно говорить также, что эти векторы параллельны, однако в векторной алгебре принято говорить "коллинеарны".) Справедливо и обратное утверждение: если векторы и коллинеарны, то они связаны отношением

Следовательно, равенство (1) выражает условие коллинеарности двух векторов.


Сложение и вычитание векторов

При сложении векторов нужно знать, что суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец - с концом вектора , при условии, что начало вектора приложено к концу вектора . (Рис. 3)


Это определение может быть распределено на любое конечное число векторов. Пусть в пространстве даны n свободных векторов . При сложении нескольких векторов за их сумму принимают замыкающий вектор, начало которого совпадает с началом первого вектора, а конец - с концом последнего вектора. То есть, если к концу вектора приложить начало вектора , а к концу вектора - начало вектора и т.д. и, наконец, к концу вектора - начало вектора , то суммой этих векторов служит замыкающий вектор , начало которого совпадает с началом первого вектора , а конец - с концом последнего вектора . (Рис. 4)

Слагаемые называются составляющими вектора , а сформулированное правило - правилом многоугольника . Этот многоугольник может и не быть плоским.

При умножении вектора на число -1 получается противоположный вектор . Векторы и имеют одинаковые длины и противоположные направления. Их сумма даёт нулевой вектор , длина которого равна нулю. Направление нулевого вектора не определено.

В векторной алгебре нет необходимости рассматривать отдельно операцию вычитания: вычесть из вектора вектор означает прибавить к вектору противоположный вектор , т.е.

Пример 1. Упростить выражение:

.

,

то есть, векторы можно складывать и умножать на числа так же, как и многочлены (в частности, также задачи на упрощение выражений). Обычно необходимость упрощать линейно подобные выражения с векторами возникает перед вычислением произведений векторов.

Пример 2. Векторы и служат диагоналями параллелограмма ABCD (рис. 4а). Выразить через и векторы , , и , являющиеся сторонами этого параллелограмма.

Решение. Точка пересечения диагоналей параллелограмма делит каждую диагональ пополам. Длины требуемых в условии задачи векторов находим либо как половины сумм векторов, образующих с искомыми треугольник, либо как половины разностей (в зависимости от направления вектора, служащего диагональю), либо, как в последнем случае, половины суммы, взятой со знаком минус. Результат - требуемые в условии задачи векторы:

Есть все основания полагать, что теперь Вы правильно ответили на вопрос о векторах "Предприимчивость" и "Инновационные способности" в начале этого урока. Правильный ответ: над этими векторами производится операция сложения.

Решить задачи на векторы самостоятельно, а затем посмотреть решения

Как найти длину суммы векторов?

Эта задача занимает особое место в операциях с векторами, так как предполагает использование тригонометрических свойств. Допустим, Вам попалась задача вроде следующей:

Даны длины векторов и длина суммы этих векторов . Найти длину разности этих векторов .

Решения этой и других подобных задач и объяснения, как их решать - в уроке "Сложение векторов: длина суммы векторов и теорема косинусов ".

А проверить решение таких задач можно на Калькуляторе онлайн "Неизвестная сторона треугольника (сложение векторов и теорема косинусов)" .

А где произведения векторов?

Произведения вектора на вектор не являются линейными операциями и рассматриваются отдельно. И у нас есть уроки "Скалярное произведение векторов " и "Векторное и смешанное произведения векторов ".

Проекция вектора на ось

Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

Как известно, проекцией точки A на прямую (плоскость) служит основание перпендикуляра , опущенного из этой точки на прямую (плоскость).


Пусть - произвольный вектор (Рис. 5), а и - проекции его начала (точки A ) и конца (точки B ) на ось l . (Для построения проекции точки A ) на прямую проводим через точку A плоскость, перпендикулярную прямой. Пересечение прямой и плоскости определит требуемую проекцию.

Составляющей вектора на оси l называется такой вектор , лежащий на этой оси, начало которого совпадает с проекцией начала, а конец - с проекцией конца вектора .

Проекцией вектора на ось l называется число

,

равное длине составляющего вектора на этой оси, взятое со знаком плюс, если направление составляюшей совпадает с направлением оси l , и со знаком минус, если эти направления противоположны.

Основные свойства проекций вектора на ось:

1. Проекции равных векторов на одну и ту же ось равны между собой.

2. При умножении вектора на число его проекция умножается на это же число.

3. Проекция суммы векторов на какую-либо ось равна сумме проекций на эту же ось слагаемых векторов.

4. Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

.

Решение. Спроектируем векторы на ось l как определено в теоретической справке выше. Из рис.5а очевидно, что проекция суммы векторов равна сумме проекций векторов. Вычисляем эти проекции:

Находим окончательную проекцию суммы векторов:

Связь вектора с прямоугольной декартовой системой координат в пространстве

Знакомство с прямоугольной декартовой системой координат в пространстве состоялось в соответствующем уроке , желательно открыть его в новом окне.

В упорядоченной системе координатных осей 0xyz ось Ox называется осью абсцисс , ось 0y осью ординат , и ось 0z осью аппликат .


С произвольной точкой М пространства свяжем вектор

называемый радиус-вектором точки М и спроецируем его на каждую из координатных осей. Обозначим величины соответствующих проекций:

Числа x, y, z называются координатами точки М , соответственно абсциссой , ординатой и аппликатой , и записываются в виде упорядоченной точки чисел: M (x; y; z) (рис.6).

Вектор единичной длины, направление которого совпадает с направлением оси, называют единичным вектором (или ортом ) оси. Обозначим через

Соответственно орты координатных осей Ox , Oy , Oz

Теорема. Всякий вектор может быть разложен по ортам координатных осей:


(2)

Равенство (2) называется разложением вектора по координатным осям. Коэффициентами этого разложения являются проекции вектора на координатные оси. Таким образом, коэффициентами разложения (2) вектора по координатным осям являются координаты вектора.

После выбора в пространстве определённой системы координат вектор и тройка его координат однозначно определяют друг друга, поэтому вектор может быть записан в форме

Представления вектора в виде (2) и (3) тождественны.

Условие коллинеарности векторов в координатах

Как мы уже отмечали, векторы называются коллинеарными, если они связаны отношением

Пусть даны векторы . Эти векторы коллинеарны, если координаты векторов связаны отношением

,

то есть, координаты векторов пропорциональны.

Пример 6. Даны векторы . Коллинеарны ли эти векторы?

Решение. Выясним соотношение координат данных векторов:

.

Координаты векторов пропорциональны, следовательно, векторы коллинеарны, или, что то же самое, параллельны.

Длина вектора и направляющие косинусы

Вследствие взаимной перпендикулярности координатных осей длина вектора

равна длине диагонали прямоугольного параллелепипеда, построенного на векторах

и выражается равенством

(4)

Вектор полностью определяется заданием двух точек (начала и конца), поэтому координаты вектора можно выразить через координаты этих точек.

Пусть в заданной системе координат начало вектора находится в точке

а конец – в точке


Из равенства

Следует, что

или в координатной форме

Следовательно, координаты вектора равны разностям одноимённых координат конца и начала вектора . Формула (4) в этом случае примет вид

Направление вектора определяют направляющие косинусы . Это косинусы углов, которые вектор образует с осями Ox , Oy и Oz . Обозначим эти углы соответственно α , β и γ . Тогда косинусы этих углов можно найти по формулам

Направляющие косинусы вектора являются также координатами орта этого вектора и, таким образом, орт вектора

.

Учитывая, что длина орта вектора равна одной единице, то есть

,

получаем следующее равенство для направляющих косинусов:

Пример 7. Найти длину вектора x = (3; 0; 4).

Решение. Длина вектора равна

Пример 8. Даны точки:

Выяснить, равнобедренный ли треугольник, построенный на этих точках.

Решение. По формуле длины вектора (6) найдём длины сторон и установим, есть ли среди них две равные:

Две равные стороны нашлись, следовательно необходимость искать длину третьей стороны отпадает, а заданный треугольник является равнобедренным.

Пример 9. Найти длину вектора и его направляющие косинусы, если .

Решение. Координаты вектора даны:

.

Длина вектора равна квадратному корню из суммы квадратов координат вектора:

.

Находим направляющие косинусы:

Решить задачу на векторы самостоятельно, а затем посмотреть решение

Операции над векторами, заданными в координатной форме

Пусть даны два вектора и , заданные своими проекциями:

Укажем действия над этими векторами.

Существует два способа решения задач по стереометрии

Первый - классический - требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод - применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили - то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами - координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z :

Как найти координаты вектора? Как и на плоскости - из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA 1 B 1 C 1 D 1 точки E и K - середины ребер соответственно A 1 B 1 и B 1 C 1 . Найдите косинус угла между прямыми AE и BK.

Если вам достался куб - значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK - скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K - середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E - середина SB, а K - середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, точка D - середина ребра A 1 B 1 . Найдите косинус угла между прямыми AD и BC 1

Пусть точка A - начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D - середина A 1 B 1 . Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C - координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое - вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор - это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения - чтобы косинус угла был неотрицателен.

4. В кубе ABCDA 1 B 1 C 1 D 1 точки E и F - середины ребер соответственно A 1 B 1 и A 1 D 1 . Найдите тангенс угла между плоскостями AEF и BDD 1 .

Строим чертеж. Видно, что плоскости AEF и BDD 1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD 1 .

Сначала - нормаль к плоскости BDD 1 . Конечно, мы можем подставить координаты точек B, D и D 1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее - увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD 1 - это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA 1 B 1 C 1 D 1 - прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA 1 D 1 D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B 1 D, если расстояние между прямыми A 1 C 1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства - как это делается в «классике»:-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать "параллелепипед".

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота - вроде не дана. Как же ее найти?

«Расстояние между прямыми A 1 C 1 и BD равно √3». Прямые A 1 C 1 и BD скрещиваются. Одна из них - диагональ верхнего основания, другая - диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A 1 C 1 и BD - это, очевидно, OO 1 , где O - точка пересечения диагоналей нижнего основания, O 1 - точка пересечения диагоналей верхнего. А отрезок OO 1 и равен высоте параллелепипеда.

Итак, AA 1 = √3

Плоскость AA 1 D 1 D - это задняя грань призмы на нашем чертеже. Нормаль к ней - это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B 1 D». Но позвольте, если плоскость перпендикулярна прямой B 1 D - значит, B 1 D и есть нормаль к этой плоскости! Координаты точек B 1 и D известны:

Координаты вектора - тоже.

Буду собой